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In this paper, we present a minimisation method for computing the ground state of sys-
tems of coupled Gross–Pitaevskii equations. Our approach relies on a spectral decomposi-
tion of the solution into Hermite basis functions. Inserting the spectral representation into
the energy functional yields a constrained nonlinear minimisation problem for the coeffi-
cients. For its numerical solution, we employ a Newton-like method with an approximate
line-search strategy. We analyse this method and prove global convergence. Appropriate
starting values for the minimisation process are determined by a standard continuation
strategy. Numerical examples with two- and three-component two-dimensional conden-
sates are included. These experiments demonstrate the reliability of our method and nicely
illustrate the effect of phase segregation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The field of low-temperature physics has been fascinating and inspiring many scientists, in particular in the last decade,
see [16] and references given therein. Memorable achievements were the first experimental realisations [1,19,22] of a single
Bose–Einstein Condensate (BEC) in 1995, and of BECs for a mixture of two and three different interacting atomic species,
respectively. Mathematically, BECs are modelled by nonlinear time-dependent Schrödinger equations; more precisely, the
order parameters of the condensates are solutions of a system of coupled Gross–Pitaevskii Equations (GPEs, [17,20]).

In the present paper, we are concerned with computing the ground state of a system of GPEs, a special solution of minimal
energy. To this purpose, as suggested in [5], we directly minimise the energy functional. We mention that an alternative ap-
proach for the ground state computation is provided by the imaginary time method which can also be considered as a steep-
est descent method, see [2,3,25] e.g. resulting in a parabolic evolution equation. Besides, an optimal damping algorithm
based on the inverse power method is used in [11]; then, the conjugate gradient method is applied for the solution of the
arising linear systems. We do not exploit these and other ([12,23]) approaches here. Our objectives are twofold. In a general
context, we present a Newton-like method for the numerical solution of a constrained minimisation problem and study its
convergence. Moreover, we apply the minimisation approach specifically to a system of GPEs to simulate the ground state
solution. Numerical results for two- and three-component two-dimensional condensate illustrating the effect of phase seg-
regation [6,7,24] are provided.

The structure of the paper is as follows. In Section 2, we first introduce the system of GPEs in a normalised form and then
state the minimisation problem. To avoid technicalities, we give a detailed description for the case of a single equation and
. All rights reserved.
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then sketch the extension to systems. Our approach relies on a spectral decomposition of the ground state solution into Her-
mite basis functions (see also [4,10]); we point out that similar ideas could be used in combination with Fourier techniques
or other spectral methods. Inserting the resulting representation into the energy functional leads to a constrained nonlinear
minimisation problem for the spectral coefficients. Section 3 is devoted to the description and analysis of a numerical meth-
od for the minimisation problem. We use a Newton-like method involving an approximate line-search strategy and contin-
uation techniques. Finally, in Section 4, we illustrate the capability of our method by three numerical examples for systems
of two or three coupled Gross–Pitaevskii equations in two space dimensions.

2. Ground state of Gross–Pitaevskii systems

In this section, we present a constrained minimisation approach for computing the ground state of systems of coupled
Gross–Pitaevskii equations. For our purposes, it is useful to employ a normalised form of the problem which we introduce
in Section 2.1. As the discussion of the general case would involve additional technicalities, we first restrict ourselves to
the case of a single Gross–Pitaevskii equation; the extension to systems of coupled Gross–Pitaevskii equations is then
sketched in Section 2.4. For the convenience of the reader, we further recall basic results on Hermite functions in Section
2.2.

We henceforth employ the vector notation x ¼ ðx1; . . . ; xdÞ 2 Rd and denote by D the d-dimensional Laplacian with respect
to x. The Lebesgue space L2 ¼ L2ðRd;CÞ of square integrable complex-valued functions is endowed as usual with the scalar
product ð� j �ÞL2 and the associated norm k � kL2 given by
ðf jgÞL2 ¼
Z

Rd
f ðxÞgðxÞdx; kfkL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf jf ÞL2

q
; f ; g 2 L2:
2.1. Gross–Pitaevskii equation

We consider the d-dimensional nonlinear Schrödinger equation
i�hotWðx; tÞ ¼ � �h2

2m Dþ VðxÞ þ �h2gjWðx; tÞj2
� �

Wðx; tÞ;

kWð�;0Þk2
L2 ¼ N

8<
: ð1Þ
where W : Rd � RP0 ! C, ðx; tÞ#Wðx; tÞ, V : Rd ! R, and �h denotes the reduced Planck’s constant. In three space dimensions
this equation is called Gross–Pitaevskii equation (see [17,20]) and describes the order parameter W of a Bose–Einstein con-
densate of an atomic species of mass m and total number of particles N, trapped in an external potential V; moreover, the
coupling constant g equals 4pr

m , with r being the scattering length of the species. We restrict ourselves to the defocusing case,
that is r P 0. Since, under certain assumptions on the potential V, the equation can be reduced to lower dimension [5], we
will use the same terminology and the name GPE also for the general d-dimensional case.

In the following, we employ a normalisation of (1)
iotwðn; tÞ ¼ � 1
2 Dþ UðnÞ þ #jwðn; tÞj2

� �
wðn; tÞ;

kwð�;0Þk2
L2 ¼ N

8<
: ð2Þ
that is obtained by the linear transformation n ¼
ffiffiffi
c
p

x with �hc ¼ m. Then, setting Cwðn; tÞ ¼ Wðx; tÞ, where C ¼
ffiffiffiffiffi
cd4
p

, we get the
GPE (2), with real potential �hUðnÞ ¼ VðxÞ and parameter # ¼ �hgC2 P 0; in (2), D denotes the d-dimensional Laplacian with
respect to n. It is easy to see that the particle number N and the energy which, for the normalised GPE (2), is given by
Eðwð�; tÞÞ ¼ �1
2

Dþ U þ 1
2
#jwð�; tÞj2

� �
wð�; tÞjwð�; tÞ

� �
L2

ð3Þ
are preserved quantities in time. We further assume that the energy is positive and finite.

2.2. Hermite spectral decomposition

For any integer j P 0 and real number c > 0, we denote by Hc
j ðnÞ the uni-variate Hermite polynomial of degree j, norma-

lised with respect to the weight function wðnÞ ¼ e�c2n2
. Hermite polynomials satisfy the recurrence relation
Hc
0ðnÞ ¼

ffiffiffiffiffi
c2

p
4

r
; Hc

1ðnÞ ¼
ffiffiffiffiffiffiffiffi
4c6

p
4

r
n;ffiffi

j
p

Hc
j ðnÞ ¼

ffiffiffi
2
p

cnHc
j�1ðnÞ �

ffiffiffiffiffiffiffiffiffiffiffi
j� 1

p
Hc

j�2ðnÞ; j P 2:
ð4Þ
We further recall that the derivative satisfies
onHc
j ðnÞ ¼ c

ffiffiffiffiffi
2j

p
Hc

j�1ðnÞ: ð5Þ
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The corresponding Hermite function Hc
j ðnÞ is defined through
Hc
j ðnÞ ¼ Hc

j ðnÞe
�1

2c
2n2
: ð6Þ
Hence, the Hermite functions ðHc
j Þ form an orthonormal basis of the function space L2ðRÞ, i.e. it holds
ðHc
j jH

c
kÞL2ðRÞ ¼ djk ð7aÞ
with Kronecker djk. As a consequence, for every function u 2 L2ðRÞ, the representation
u ¼
X

j

ujH
c
j ; uj ¼ ðujH

c
j ÞL2ðRÞ ð7bÞ
is valid; moreover, Parseval’s equality follows:
kuk2
L2ðRÞ ¼

X
j

jujj
2
: ð7cÞ
The above relations (5) and (6) imply
ð�o2
n þ c4n2ÞHc

j ðnÞ ¼ 2kjHc
j ðnÞ; 2kj ¼ c2ð1þ 2jÞ; ð8Þ
that is, the Hermite functions ðHc
j Þ are eigenfunctions of the differential operator �o2

n þ c4n2, with corresponding eigenvalues
2kj.

Using the tensor basis of the Hermite functions
Hc
j ðnÞ ¼ Hc1

j1
ðn1Þ � . . . � Hcd

jd
ðndÞe�

1
2 c2

1n2
1þ���þc2

d
n2

dð Þ
where, with abuse of notation, now we assume n ¼ ðn1; . . . ; ndÞ and j ¼ ðj1; . . . ; jdÞ, the extension to the d-variate case is
straightforward. We only notice that (8) rewrites
ð�Dþ UcðnÞÞHc
j ðnÞ ¼ 2kjHc

j ðnÞ; 2kj ¼
Xd

k¼1

c2
kð1þ 2jkÞ; ð9Þ
with the standard harmonic potential UcðnÞ ¼
Pd

k¼1c4
kn

2
k .

2.3. Minimisation approach

The ground state of the GPE (2) is a solution of the form
wðn; tÞ ¼ e�iltuðnÞ; l 2 R; u 2 L2ðRd;RÞ ð10Þ
that minimises energy functional (3); in particular, it is required that u fulfills the relations
EðuÞ ¼ �1
2

Dþ U þ 1
2
#u2

� �
uju

� �
L2
!min;

GðuÞ ¼ kuk2
L2 � N ¼ 0:

ð11aÞ
In view of the computation of the chemical potential l, we consider the Lagrange function Eðu;gÞ ¼ EðuÞ þ gGðuÞ. Using
the fact that the local minima of E are solutions of rEðu;gÞ ¼ 0, we obtain the nonlinear system
�1
2

Dþ U þ #u2
� �

u ¼ gu; kuk2
L2 ¼ N; ð11bÞ
the first relation in (11b) implies EðuÞ þ 1
2#ku2k2

L2 ¼ Ng. We note that the constrained nonlinear eigenvalue problem (11b)
also follows by inserting the representation (10) into (2); we conclude
Nl ¼ Ng ¼ EðuÞ þ 1
2
#ku2k2

L2 ;
i.e., l coincides with the Lagrange multiplier g.
For the numerical solution of (11a), we employ the spectral representation (7b) truncated to J � 1 and property (8) to re-

write (11a) as follows:
EqðuÞ ¼
XJ�1

jjj¼0

kju2
j þ q

Z
Rd

UðnÞ � 1
2

UcðnÞ
� � XJ�1

jjj¼0

ujH
c
j ðnÞ

 !2

dnþ 1
2
#

Z
Rd

XJ�1

jjj¼0

ujH
c
j ðnÞ

 !4

dn!min; ð12aÞ

GðuÞ ¼
XJ�1

jjj¼0

u2
j � N ¼ 0; ð12bÞ



352 M. Caliari et al. / Journal of Computational Physics 228 (2009) 349–360
where j j j¼maxfj1; . . . ; jdg, and where q is an additional parameter. Its significance will become clear later in Section 3.3.
Here, we only mention that the energy EqðuÞ to be minimised corresponds to the choice q ¼ 1. Moreover, we approximate
the integrals by means of the Gauss–Hermite quadrature formula with 2J � 1 nodes; this allows the exact integration of the
last term of (12a).

The choice of c clearly depends on the potential UðnÞ and on #. For example, the classical and widely used (in [5,11,25],
e.g.) harmonic potential
VðxÞ ¼ m
2

Xd

k¼1

x2
kx2

k

allows to have UðnÞ � 1
2 UcðnÞ with c2

k ¼ xk, k ¼ 1; . . . ; d. On the other hand, the larger # is, the wider the region is where the
particles are mainly concentrated. Thus, smaller values of ck would help, with a better matching of the exponential decay of
the Hermite functions (6).

Henceforth, we write the minimisation problem (12) in the abstract form
FðxÞ !min;
GlðxÞ ¼ 0; 1 6 l 6 ‘:

ð13Þ
In the case of a single GPE, which we considered up to now, we have ‘ ¼ 1. The functions F and G1 ¼ G replace the
(approximated) energy functional E and the constraint, respectively; further, the unknown x 2 Rn takes the role of finitely
many spectral coefficients uj.

2.4. Extension to Gross–Pitaevskii systems

In this section, we sketch how the above minimisation approach for the ground state computation extends to multicom-
ponent systems of GPEs. Let us consider the system of ‘ GPEs.
i�hotW
ðlÞ ¼ � �h2

2ml
Dþ Vl þ �h2glljWðlÞj

2 þ �h2 P‘
k¼1
k–l

glkjWðkÞj
2

0
B@

1
CAWðlÞ;

kWðlÞk2
L2 ¼ Nl; l ¼ 1; . . . ; ‘

8>>>><
>>>>:

ð14Þ
describing the order parameters WðlÞ : Rd � RP0 ! C, ðx; tÞ#WðlÞðx; tÞ of atomic species with masses ml, see [15] and also
[11,26]. We call gll intra-species coupling constants and glk ¼ gkl, l–k inter-species coupling constants; for d ¼ 3, glk equals
2prlk

mlþmk
mlmk

, where rlk is the scattering length for the l-k species.
Again, we restrict ourselves to the defocusing case rlk P 0. By a linear transformation, analogously to before, system (14)

takes the form
iotw
ðlÞ ¼ � �hc

2ml
Dþ Ul þ

P‘
k¼1

#lkjwðkÞj2
� �

wðlÞ;

kwðlÞk2
L2 ¼ Nl; l ¼ 1; . . . ; ‘

8><
>: ð15Þ
with
�hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 � � �m‘

‘
p

and #lk ¼ �hglkC2; C ¼
ffiffiffiffiffi
cd4
p

:

Let
w ¼ ðwð1Þ; . . . ;wð‘ÞÞ; u ¼ ðuð1Þ; . . . ;uð‘ÞÞ:
The ground state w of the GPEs system (15) is a special solution
wðlÞðn; tÞ ¼ e�ill tuðlÞðnÞ; l ¼ 1; . . . ; ‘
that minimises the energy functional
EðuÞ ¼
X‘
l¼1

� �hc
2ml

Dþ Ul þ
1
2

X‘
k¼1

#lkjuðkÞj2
 !

uðlÞjuðlÞ
 !

L2

:

The chemical potentials ll are given by
llNl ¼ � �hc
2ml

Dþ Ul þ
X‘
k¼1

#lkjuðkÞj2
 !

uðlÞjuðlÞ
 !

L2

:

In order to compute the ground state of (15) we thus consider the constrained minimisation problem
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with J ¼
Section
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EðuÞ !min;

GlðuÞ ¼ kuðlÞk2
L2 � Nl ¼ 0; 1 6 l 6 ‘:
As before, we employ a spectral decomposition of uðlÞ into a common basis of Hermite functions; truncating the infinite sums
we finally get
EqðuÞ ¼
X‘
l¼1

�hc
ml

XJ�1

jjj¼0

kjðuðlÞj Þ
2 þ ql

Z
Rd

UlðnÞ �
�hc

2ml
UcðnÞ

� � XJ�1

jjj¼0

uðlÞj H
c
j ðnÞ

 !2

dn

2
4

þ1
2

X‘
k¼1

#lk

Z
Rd
�

XJ�1

jjj¼0

uðkÞj H
c
j ðnÞ

 !2 XJ�1

jjj¼0

uðlÞj H
c
j ðnÞ

 !2

dn

3
5!min; ð16aÞ

GlðuÞ ¼
XJ�1

jjj¼0

ðuðlÞj Þ
2 � Nl ¼ 0; 1 6 l 6 ‘: ð16bÞ
This results again in a minimisation problem of the form (13).

3. Constrained minimisation

For the numerical solution of the constrained minimisation problem (13), we apply a Newton-like method with line-
search; the algorithm is described and analysed in the following sections. Note that in several space dimensions, a full New-
ton iteration is computationally expensive due to the large number of unknowns. Our approach is based on a simplified iter-
ation where the costs of the solution of the arising linear system grow only linearly with the number of unknowns. It turns
out that our new approach is more efficient than the standard Newton iteration even in one space dimension, if a higher
spatial resolution is regarded, see Fig. 1.

3.1. A Newton-like method for minimisation

Let F : Rn ! R and G1; . . . ;G‘ : Rn ! R be sufficiently smooth functions. We aim at finding a (local) minimiser xI of (13).
For this purpose we take up an idea presented in Han [18] and consider the exact penalty function
PðxÞ ¼ FðxÞ þ r
X‘
i¼1

jGiðxÞj ð17Þ
with an appropriate penalty parameter r > 0 to be chosen in Section 3.3. DenotingrG ¼ ½rG1; . . . ;rG‘�, we recall that a solu-
tion xI of (13) satisfies the first order conditions
rFðxIÞT þ yITrGðxIÞT ¼ 0 ð18aÞ
GðxIÞ ¼ 0 ð18bÞ
with a corresponding Lagrange multiplier yI. Any point xI satisfying these first order conditions is called a critical point of
(13).

Starting from a given approximation xðkÞ to the minimiser xI, we consider the quadratic minimisation problem QðxðkÞ;HðkÞÞ
0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

CPU time in seconds necessary to compute the ground state of the one-dimensional GPE (2) with the standard harmonic potential UðnÞ ¼ 1
2 n2, N ¼ 1,

140 Hermite functions, as a function of #. The exact Newton method (dashed line) is more expensive than our new strategy (solid line), described in
3.
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rFðxðkÞÞTsþ 1
2

sTHðkÞs!min ð19aÞ
subject to the linear constraints
GiðxðkÞÞ þ rGiðxðkÞÞTs ¼ 0; i ¼ 1; . . . ; ‘: ð19bÞ
Here, HðkÞ denotes a symmetric matrix that approximates the Hessian of F. We propose to take HðkÞ ¼ HðxðkÞÞ with an appro-
priate function H. The precise choice of H will be discussed in Section 3.2 below. Han shows that a solution sðkÞ of (19) is a
descent direction of (17), if HðkÞ is positive definite and the corresponding Lagrange multiplier is bounded by r, see [18, Thm.
3.1]. For an appropriate step length kk satisfying
PðxðkÞ þ kksðkÞÞ < PðxðkÞÞ;
the new approximation xðkþ1Þ is defined by
xðkþ1Þ ¼ xðkÞ þ kksðkÞ: ð20Þ
In order to get a globally convergent method, the step length kk has to satisfy additional conditions. Among the different pos-
sibilities, we consider the first Armijo–Goldstein condition
PðxðkÞ þ kksðkÞÞ 6 PðxðkÞÞ þ akkrPðxðkÞÞTsðkÞ ð21Þ
for some fixed 0 < a < 1, independently of k. The existence of the directional derivative rPðxðkÞÞTsðkÞ is verified in [18].
We employ a backtracking line-search strategy as described in [8, Section 6.3.2]. This turns out to be an essential feature

of our method. The size of a in (21) is typically quite small. In literature, the value a ¼ 10�4 is recommended. Starting with an
initial guess k ¼ 1 for the step length, we reduce k step by a factor b 2 ½0:1;0:5� until (21) holds. In each step of this line-
search, the size of b is determined anew from a quadratic or a cubic model of the restriction of P in search direction. For de-
tails of this algorithm, see [8, Algorithm A6.3.1].

The convergence properties of our algorithm are collected in the following theorem which is obtained by a small mod-
ification of Theorem 3.2 in [18]. In contrast to [18], we use a different (non-exact) line-search strategy.

Theorem 1. Let F and G ¼ ðG1; . . . ;G‘ÞT be continuously differentiable and let the following conditions hold, where fxðkÞg denotes
the sequence defined in (20):

(a) The function F is bounded from below and rG has full rank.
(b) The matrices HðkÞ ¼ HðxðkÞÞ are positive definite, and for all critical points xI of (13) there exists a neighborhood where H is

continuous.
(c) The solution of each quadratic minimisation problem QðxðkÞ;HðkÞÞ, given by (19), has a Lagrange multiplier that is bounded by

r in the maximum norm.

Then, the sequence fxðkÞg converges to a critical point xI of (13), or any of its accumulation points is a critical point.

Proof. Since F is bounded from below, the exact penalty function P has the same property. By construction, the sequence
fPðxðkÞÞg is monotonically decreasing and thus converges to pI, say. Let xI be an accumulation point of the sequence
fxðkÞg. Without loss of generality, we may assume that xðkÞ converges to xI. In particular, we have kksðkÞ ! 0 for k!1.

Since F and Gi; i ¼ 1; . . . ; ‘ are continuously differentiable, and HðkÞ ¼ HðxðkÞÞwith continuous H, for k sufficiently large, the
corresponding solutions sðkÞ of (19) converge to sI which solves QðxI;HðxIÞÞ.

If sI ¼ 0, then xI obviously satisfies the first order conditions (18).
Otherwise, as sI–0, we conclude from [18, Thm. 3.1] that there exists k > 0 with PðxI þ ksIÞ < PðxIÞ. In accordance with

our backtracking strategy, let kI be the largest k 2 ð0;1� that satisfies the Armijo–Goldstein condition (21). Due to the
continuity of the data, we have that kk P kI=2 for k sufficiently large which contradicts kksðkÞ ! 0. h
3.2. Application to the GPE

In order to apply the just described method to our constrained minimisation problem (13), we have to define the function
H.

For this, we choose a singularity level TOL and set
djðxÞ ¼
o2F
ox2

j

þ
X‘
i¼1

yi
o2Gi

ox2
j

�����
�����: ð22Þ
If djðxÞ 6 TOL, we modify (22) to djðxÞ ¼ 1. A typical value for the singularity level is TOL ¼ 10�8. With
dðxÞ ¼max 1;TOL
krFðxÞk2

kDðxÞk2

� �
; DðxÞ ¼ ðd1ðxÞ; . . . ; dnðxÞÞT ð23Þ
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we finally define the function H as
Fig. 2.
as a fun
(25) for
HðxÞ ¼ dðxÞdiagðd1ðxÞ; . . . ;dnðxÞÞ: ð24Þ
This choice of H satisfies the conditions of Theorem 1.
In some of our examples below, the generic choice a ¼ 10�4 in (21) required an unexpectedly high number of iterations.

This happens even in the one-dimensional single-equation case for particular values of #, see Fig. 2. To overcome this prob-
lem, we vary the size of a in the iteration process. After accepting a step, say step k, we update a as follows.

If kk ¼ 1 and rPðxðkÞÞTsðkÞ < 0, we increase a according to
anew ¼minðâ;1:25a;0:99Þ; â ¼ Pðxðkþ1ÞÞ � PðxðkÞÞ
rPðxðkÞÞTsðkÞ

; ð25aÞ
else, if kk < 1, we decrease a according to
anew ¼maxð10�4;minðk; 0:75aÞÞ: ð25bÞ
If anew does not admit an admissible step length in step kþ 1, we put anew ¼ 10�4 and restart the line-search with k ¼ 1.

3.3. Choice of the penalty parameter and the starting values

Appropriate starting values for the local optimisation procedure are determined with the help of a continuation method.
For a general overview of such methods, see [9]. In our case, we choose #lk and ql as continuation parameters. For this pur-
pose, we replace #lk by #̂lk in (16a) and continue, for appropriate initial values, the parameters #̂lk to #lk and ql to 1. As initial
values for #̂lk, we take #̂lk ¼ ðNlNkÞ�1=2. The choice of the initial values for ql is more tricky. It depends on the difference be-
tween the given and the harmonic potential. If the potentials are very close to each other, the corresponding ql is chosen
close to 1, with ql ¼ 1 for the standard harmonic potential. Otherwise, ql is taken smaller.

In the first step of the continuation method, we take as starting value u(l) the ground state of the linear Schrödinger equa-
tion with standard harmonic potential. In the subsequent steps, we then take the solution of the previous step as starting
value for u(l).

For the actual values of #̂lk and ql, we compute the ground state by using the above procedure. Thereafter, we enlarge #̂lk

and ql according to the formulas
#̂new
lk ¼ ð1þ jÞ#̂lk; qnew

l ¼ ð1þ jÞql: ð26Þ
The size of j in (26) has to be chosen appropriately. We take here into account the speed of convergence of the iteration. If
the residual is smaller than 10�6 after less than three iterations, we double the value j in the next continuation step; if the
residual does not meet the condition after ten iterations, we half j and redo the whole step; else, we keep the value of j in
the next step.

This procedure allows to determine appropriate starting values even for large values of #lk in a fast and reliable way.
The penalty parameter r in (17) is chosen in accordance with the size of the chemical potentials l1; . . . ;l‘. Having com-

puted the ground state u of the current step, we calculate approximations to the chemical potential for #̂new
lk by using the just

computed u. The maximal value of these approximations is taken for r. This choice guarantees that r is an upper bound for
the Lagrange multiplier in the step for #̂new

lk .
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4. Numerical implementation and illustrations

We have implemented the above algorithm in MATLAB and it can be used without any restriction also in GNU OCTAVE, version
greater or equal to 3.0.0. In the present version, our code can treat coupled systems of GPEs in one or two space dimensions.
Gauss–Hermite quadrature points are computed using the stable and efficient routines provided in [13,14]. Hermite func-
tions at quadrature points are computed once and for all using the stable recurrence relation (4). The program is freely avail-
able from the authors on request.

The following examples illustrate the capability of our method. We note that the choice of the parameters is not strictly
related to physical experiments. In particular, in all the numerical examples we use the same masses for all the components,
but vary the scattering lengths. We emphasise however that in our implementation there is no restriction at all in using dif-
ferent masses. SI units are used throughout this section.

Example 1. As a first numerical example, we first consider the case of a two-component (‘ ¼ 2) two-dimensional
condensate, modelled by (15), each component with the same atomic species 87Rb, mass ml ¼ m ¼ 1:44 � 10�25, and the same
number of particles Nl ¼ N ¼ 107. The intra-species coupling constants are #11 ¼ 1:3 � 10�6 and #22 ¼ 1:3 � 10�11. The
potentials are scaled and off-centered harmonic potentials (see, e.g., [2]), namely
Ulðn1; n2Þ ¼
1
2
½ðx1 lðn1 � n1 lÞÞ

2 þ ðx2 lðn2 � n2 lÞÞ
2�
with
x11 ¼ p; x21 ¼ p; n11 ¼ 0; n21 ¼ 0;
x12 ¼ 3p; x22 ¼ 3p; n12 ¼ 0:19; n22 ¼ 0:
We perform four numerical experiments, with identical inter-species coupling constant #lk, l–k, assuming the values 0,
2:5 � 10�7, 1:0 � 10�6 and 2:0 � 10�6, respectively. The number of Hermite functions was fixed to J ¼ 64 for each direction
and component, resulting in a total of ‘J2 ¼ 8192 degrees of freedom for the spectral coefficients. The required CPU time
(on a 2.2 GHz CPU) is about 2 s. The contour plots of the solution are given in Fig. 3.

Example 2. As a second example, we consider the case of a three-component (‘ ¼ 3) two-dimensional condensate, modelled
by (15), each component with the same atomic species 87Rb, mass ml ¼ m ¼ 1:44 � 10�25, and the same number of particles
Nl ¼ N ¼ 107. The intra-species coupling constants are #11 ¼ #33 ¼ 1:3 � 10�5 and #22 ¼ 6:3 � 10�8. The potentials are scaled,
off-centered and rotated harmonic potentials, namely
Ulðn1; n2Þ ¼
1
2
½ðx1 lððn1 � n1 lÞ cos Xl þ ðn2 � n2 lÞ sin XlÞÞ2 þ ðx2 lððn1 � n1 lÞ sin Xl � ðn2 � n2 lÞ cos XlÞÞ2�
with
x11 ¼
3
2
p; x21 ¼ p; X1 ¼ 0; n11 ¼ �0:37; n21 ¼ 0;

x12 ¼ p; x22 ¼ 2p; X2 ¼
p
4
; n12 ¼ 0; n22 ¼ 0;

x13 ¼
3
2
p; x23 ¼ p; X3 ¼ 0; n13 ¼ 0:37; n23 ¼ 0:
We perform five numerical experiments, with identical inter-species coupling constant #lk, l–k, assuming the values 0,
1:3 � 10�6, 2:5 � 10�6, 5:0 � 10�6 and 1:0 � 10�5, respectively. The number of Hermite functions was fixed to J ¼ 64 for each
direction and component, resulting in a total of ‘J2 ¼ 12,288 degrees of freedom for the spectral coefficients. The required
CPU time is about 2 s. The contour plots of the solution are given in Fig. 4.

Increasing the inter-species coupling constant #lk clearly shows the phase segregation phenomenon (see [21,24]) already
discussed and proved in [6,7] for the two-component and the three-component condensate, respectively.

Example 3. Finally, we consider again the case of a three-component two-dimensional condensate, each component with
the same atomic species 87Rb, mass ml ¼ m ¼ 1:44 � 10�25, and the same number of particles Nl ¼ N ¼ 107. The intra-species
coupling constants are #ll ¼ 1:3 � 10�5, l ¼ 1;2;3 and #12 ¼ #21 ¼ 0. The potentials are scaled and strongly anisotropic har-
monic potentials, namely
Ulðn1; n2Þ ¼
1
2
½ðx1 ln1Þ2 þ ðx2 ln2Þ2�
with
x11 ¼ p; x21 ¼ 10p; x12 ¼ 10p; x22 ¼ p; x13 ¼ p; x23 ¼ p:
We perform five numerical experiments, with #13 ¼ #31 ¼ #23 ¼ #32 assuming the values 0, 5 � 10�6, 1:3 � 10�5, 2:5 � 10�5 and
5 � 10�5, respectively. The number of Hermite functions was fixed to J ¼ 70 for each direction and component, resulting in a
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total of ‘J2 ¼ 14,700 degrees of freedom for the spectral coefficients. The required CPU time is about 12 s. The contour plots of
the solution are reported in Fig. 5.
5. Conclusions

In this paper, we were concerned with the numerical computation of the ground state of Gross–Pitaevskii systems. By
means of a spectral discretisation, we transformed the problem into a constrained minimisation problem and employed a
Newton-like method with approximate line-search for its numerical solution. The algorithm was implemented in MATLAB

(and successfully tested in GNU OCTAVE); the code is available from the authors on request. The enclosed numerical examples
clearly demonstrate the reliability of the new method. We point out that the presented minimisation approach is neither
restricted to Gross–Pitaevskii systems nor to Hermite basis functions.

Acknowledgment

The authors wish to thank Marco Squassina for providing the settings used for the experiment illustrated in Fig. 5.

References

[1] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269
(5221) (1995) 198–201.

[2] W. Bao, Ground states and dynamics of multicomponent Bose–Einstein condensates, Multiscale Model. Simul. 2 (2) (2004) 210–236.
[3] W. Bao, Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25 (5) (2004)

1674–1697.
[4] W. Bao, J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudo-spectral method for Bose–Einstein condensates, SIAM J. Sci. Comput. 26 (6)

(2005) 2010–2028.
[5] W. Bao, W. Tang, Ground-state solution of Bose–Einstein condensate by directly minimizing the energy functional, J. Comp. Phys. 187 (2003) 230–254.
[6] M. Caliari, M. Squassina, Location and phase segregation of ground and excited states for 2D Gross–Pitaevskii systems, Dyn. Partial Differ. Equ. 5 (2)

(2008) 117–137.
[7] M. Caliari, M. Squassina, Spatial patterns for the three species Gross–Pitaevskii system in the plane, Electron. J. Diff. Eqns. 79 (2008) 1–15.
[8] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, Philadelphia, 1998.
[9] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer, Berlin, 2004.

[10] C.M. Dion, E. Cancès, Spectral method for the time-dependent Gross–Pitaevskii equation with a harmonic trap, Phys. Rev. E 67 (2003) 046706.
[11] C.M. Dion, E. Cancès, Ground state of the time-independent Gross–Pitaevskii equation, Comput. Phys. Commun. 177 (10) (2007) 787–798.
[12] M. Edwards, R.J. Dodd, C.W. Clark, P.A. Ruprecht, K. Burnett, Properties of a Bose–Eistein condensate in an anisotropic harmonic potential, Phys. Rev. A

53 (4) (1996) 1950–1953.
[13] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press, Oxford, 2004.
[14] W. Gautschi, Orthogonal polynomials (in Matlab), J. Comput. Appl. Math. 178 (1–2) (2005) 215–234.
[15] R. Graham, D. Walls, Collective excitations of trapped binary mixtures of Bose–Einstein condensed gases, Phys. Rev. A 57 (1) (1998) 484–487.
[16] R. Grimm, Low-temperature physics: a quantum revolution, Nature 435 (2005) 1035–1036.
[17] E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20 (1961) 454.
[18] S.P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl. 22 (1977) 297–309.
[19] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys.

Rev. Lett. 78 (1997) 586–589.
[20] L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961) 451.
[21] F. Riboli, M. Modugno, Topology of the ground state of two interacting Bose–Einstein condensates, Phys. Rev. A 65 (2002) 063614.
[22] C. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, P. Vorderwisch, Bose–Einstein condensation of the triplet

states in the magnetic insulator TlCuCl3, Nature 423 (6935) (2003) 62–65.
[23] B.I. Schneider, D.L. Feder, Numerical approach to the ground and excited states of a Bose–Einstein condensed gas confined in a completely anisotropic

trap, Phys. Rev. A 59 (3) (1999) 2232–2242.
[24] E. Timmermans, Phase separation of Bose–Einstein condensates, Phys. Rev. Lett. 81 (1998) 5718–5721.
[25] R.P. Tiwari, A. Shukla, A basis-set based Fortran program to solve the Gross–Pitaevskii equation for dilute Bose gases in harmonic and anharmonic

traps, Comput. Phys. Commun. 174 (12) (2006) 966–982.
[26] H. Wang, A time-splitting spectral method for coupled Gross–Pitaevskii equations with applications to rotating Bose–Einstein condensates, J. Comput.

Appl. Math. 205 (2007) 88–104.


	A minimisation approach for computing the ground state of gross–pitaevskii Gross–Pitaevskii systems
	Introduction
	Ground state of Gross–Pitaevskii systems
	Gross–Pitaevskii equation
	Hermite spectral decomposition
	Minimisation approach
	Extension to Gross–Pitaevskii systems

	Constrained minimisation
	A Newton-like method for minimisation
	Application to the GPE
	Choice of the penalty parameter and the starting values

	Numerical implementation and illustrations
	Conclusions
	AcknowledgementAcknowledgment
	References


